Home : News : News
JBSA News

Naval Medical Research Unit San Antonio researchers developing field portable sterilizer

By David DeKunder | 502nd Air Base Wing Public Affairs | March 1, 2017

JOINT BASE SAN ANTONIO, Texas —

Researchers at the Naval Medical Research Unit San Antonio, or NAMRU-SA, at Joint Base San Antonio-Fort Sam Houston are developing a portable sterilizer that can be used in military field operations and operate by battery when power is not available.

The prototype ozone sterilizer would enable military medical personnel to sterilize medical and dental instruments in areas that do not have infrastructure to support electrical power, and is less heavy to transport, said Roy Dory, head of the Biomedical Systems, Engineering and Evaluation Department, Combat Casualty Care Directorate, at NMRU-SA.

“The goal of the project is to develop a truly self-sufficient, portable sterilizer that can be operational from battery power,” Dory said.

Dory said the prototype will replace the bulkier sterilizer systems used in field operations, some of which can weigh hundreds of pounds, need a reliable source of power and a reliable supply chain to function.

In contrast, the ozone sterilizer can be utilized in austere settings which have no reliable sources of power and a limited supply chain because it can operate on backup battery power for up to six hours.

“The main things that we have tried to address with this system are size, weight, portability and minimizing energy requirements,” Dory said.

Unlike current sterilizing devices, the ozone sterilizer doesn’t need any consumable resources that must be converted and transported to the field for sterilization to occur. The sterilizer uses ozone gas, which is a strong oxidizing agent formed from oxygen and ambient air that kills pathogens and bacteria from forming on medical and dental instruments.

The device contains compartments for the battery and sterilization system.

Researchers and scientists at NAMRU-SA have been working on the prototype sterilizer for three years. Initial testing was conducted to determine whether ozone was a good sterilizing agent for medical and dental instruments.

Once that testing was completed, Dory said researchers were able to start development of the sterilizer, making it into an automated system that can control ozone production, monitor conditions in the sterilization compartment, and convert the remaining ozone back into oxygen at the end of the sterilization cycle.

Dory said NAMRU-SA researchers and scientists have been working with the Marine Corps on developing a prototype for sterilizing dental instruments. He said other branches of the armed services are also interested in working with the NMRU-SA in developing the ozone sterilizer.

Researchers still need more time to develop the prototype before it can be tested in military field operations, Dory said.

Those include talking to potential users on the design parameters of the device.  This will have an impact on the size and weight of the sterilizer system, the amount of time it will take for the system to sterilize instruments, how much ozone the system will produce, the amount of energy it will use and the size of the sterilization compartment and battery capacity.

In addition, the device will need approval from the Federal Drug Administration on requirements for sterility assurance.

Dory said having portable ozone sterilizers would enable military medical units stationed near combat zones to have sterilized instruments readily available for use.

“It would certainly fill a gap in taking that sterilization capability to more austere environments, which could potentially get that care closer to the casualty,” he said.

In the future, Dory said the ozone sterilizer could be used by civilian medical personnel in remote places of the world, including humanitarian missions, natural disasters, outbreaks of diseases, pandemics and in other situations people need medical care.